Biochemistry 4P03 Course Outline
(2011-2012)

Course Coordinator: Dr. Felicia Vulcu (vulcuf@mcmaster.ca), ext. 22838, HSC 4H43 (please access through HSC 4H45)

The following information is for students currently enrolled in Biochemistry 4P03, and for students in their second and third year who are considering enrolling in Biochemistry 4P03, in their senior year. Communication of course information will be via email. Please ensure we have your current email address and that you check it regularly.

Undergraduate Student Research Guidelines

Undergraduate research is considered a vital component of learning by the department of Biochemistry and Biomedical Sciences, and is therefore a degree requirement for students enrolled in both the Biomedical Sciences and Biotechnology specializations. In their senior year, students will have the opportunity to conduct original scientific research in a faculty member’s laboratory. On some occasions, students have been able to accomplish work that has contributed to a scientific publication. The following information will help in the selection of a potential supervisor and research project.

Course Basics

Biochem 4P03: A 3-unit research project in Biochemistry during the first or second term. Assessment is based on laboratory work (approximately 12 hours per week in one term), and a final thesis report. Minimum CA of 7.0 is required. This research course differs from a regular course in terms of the more independent nature of the work, and the degree of student responsibility and initiative. Minimum CA of 7.0 is required.

Making Arrangements for a Research Supervisor and Topic

In the fall of their third year, students should begin to think about potential supervisors and research projects for their senior year. The selection of a research topic should derive from a student’s course experience and interests. It is recommended that students review the research interests of the faculty and associate faculty members in the department and schedule an interview with at least 3 members to discuss possibilities for a research project. Supervisors must be full-time members or associate members of the Department of Biochemistry and Biomedical Sciences. A list of potential supervisors and a description of their research can be found at http://www.fhs.mcmaster.ca/biochem/people/faculty/index.php under the faculty listing on the ‘People’ link.

From September until January, both the students and faculty will have a chance to meet with a number of potential supervisors and potential thesis students, respectively. Final supervisory arrangements will be made during the month of February. A ‘Permission Form’ (which can be downloaded from the Department’s website http://www.fhs.mcmaster.ca/biochem/undergraduate/forms_and_procedures.html) must be filled out by the student, signed by the supervisor and submitted to Liz Theriault in the Undergraduate Office (HSC 4H45). This information must be submitted no later than March 1. Course permissions will be put on SOLAR during the summer once the final results for the winter session are in.*

*Students who are unable to meet the required minimum CA for Biochem 4B06, 4F09 and 4R12 at the end of their third year will automatically be considered for enrolment in Biochem 4P03, 4B06 and 4F09, respectively.

If it is possible for students and supervisors to delineate the project before the student leaves in April, it may be feasible for the student to do some preliminary research and reading during the summer months.
In Preparation for Your Research Project

During the first week of September (or January, for 4P03 students in term II), the student should arrange to meet with his/her supervisor. At this initial meeting, the project will be defined and, in consultation with the supervisor, students will agree upon an approximate work schedule for each term and later agree to any changes that may be required. Students should expect to begin work in the laboratory immediately after the initial meeting with their supervisor. Students should familiarize themselves with the background material at the beginning of the project and conduct a thorough literature review of the proposed project.

To assist with your review of the literature, students will find PubMed to be an excellent research tool. PubMed is a service of the National Library of Medicine which searches the MEDLINE database covering the fields of medicine, nursing, dentistry, veterinary medicine, the health care system, and the preclinical sciences. MEDLINE contains bibliographic citations and author abstracts from more than 4,600 biomedical journals published around the world dating back to 1966. PubMed includes links to many sites providing full text articles online and other related resources.

PubMed Tutorial from the University of Florida Health Sciences Centre Libraries: http://www.library.health.ufl.edu/pubmed/pubmed2/

Remember when searching databases, that your choice of key words is important in getting the best search results possible. The majority of the journals related to research in Biochemistry are located in the Health Sciences Library. Many of these journals can be accessed online through PubMed and also through the library’s subscription to online resources http://hsl.mcmaster.ca/olj.html.

Acknowledgement of Previous Work Related to the Project

Students who may have previously worked in the same laboratory in which they are completing their thesis are asked to provide a one page summary of any work that is related to the project being undertaken for their thesis. This summary should be submitted to the course coordinator by September, 2011 (or by January, 2011, for 4P03 students in term II). Any work done during summer months or prior to this time should not be included in the thesis or any presentations without clearly identifying and acknowledging it.

Schedule of Events:

Initial meeting FORM (Must be completed by September 15, 2011 for Term 1 and January 13, 2012 for Term 2) – the student must arrange a meeting with his/her supervisor to discuss the research project, course requirements, work schedule and expectations of supervisor. The student and supervisor must agree on all these terms and then fill out the Initial Meeting form provided which summarizes the main outcomes of the meeting (provided in this course outline). This should be handed in to Elizabeth Theriault in HSC 4H45 no later than September 15, 2011 T1/ January 13, 2012 T2. Laboratory work should begin following this meeting.

Submission of final report – due to your supervisor NO LATER than the last day of classes! Late submissions will be penalized with a deduction of 20% per day from the final mark of the report.
Laboratory Performance

To ensure the most success out of their project, students will be expected to spend an adequate number of hours in the laboratory each week approximately 12 hours for 4P03. Problem solving, creativity, innovation and good experimental technique are the qualities of a good scientist. Students are encouraged to explore alternative interpretations of data or to suggest what line of investigation should be next.

Safety training – Please ensure that students have taken the core/update WHMIS, Fire Training, Biosafety, site-specific and all other relevant safety courses prior to starting in the lab. It is the responsibility of the lab supervisor to ensure all thesis students have received their safety training and are conducting their experiments in a safe manner. It is also the responsibility of the supervisor to ensure their thesis students are being supervised during their time in the lab. If you require more information on this subject please ask your lab supervisor or contact the FHS safety office.

Lab notebook guidelines - A notebook is an essential tool to help organize your laboratory research. Number each page of the notebook, date and record each experiment, including the experimental procedure, results and analysis with calculations. The content of the notebook should be easily readable and should contain enough information so that another undergraduate student could repeat the experiment with no prior knowledge. Care should be taken to ensure the notebook is very organized and contains an index for ease of navigation. Make sure to include all details of day-to-day experiments including a purpose for the experiment, any mistakes made throughout the experiment and the conclusions. Include all discussions and thoughts on the experimental goals (this includes email communications between your supervisor/collaborator(s)). This notebook is an integral part of your supervisor’s research and must be left with the supervisor at the conclusion of the project.

Completion of Lab Work

Students enrolled in 4P03 should allow sufficient time to analyze their data and complete their thesis by the last day of classes. Students are strongly encouraged to begin writing their thesis in stages throughout the term (ie. An extensive literature review completed at the beginning of the course will allow you to write a draft of your introduction, and experimental procedures can be written up as you go along). The following section contains some general instructions for the final thesis report.

The Final Project Report

The final report must be submitted directly to your supervisor by the last day of classes. The report should follow the format of a standard biochemical journal, e.g. Biochemistry. Information for authors on how to prepare and submit a manuscript can be downloaded at http://pubs.acs.org/journals/bichaw/.

Your report should contain the following sections:

1. **Title Page:**
 - Title of project
 - Student name and number
 - Supervisor name and department
 - Course name
 - Term(s) in which the project was carried out
 - Date submitted

2. **Table of Contents:**
 - With page numbers
3. **List of Abbreviations:**
Abbreviate only words or terms used more than 3 times. It is not necessary to include standard abbreviations for time, mass, DNA, RNA, etc…

4. **Abstract:**
A one page concise summary of the questions asked, results and significance.

5. **Introduction:**
A summary of the current state of knowledge in the area of study, a statement of the problem and the approach used to address it.

6. **Experimental Procedures:**
This section should contain sufficient details of the experimental protocols for someone else to repeat the experiment. If the procedure has already been published in a journal article in detail, a reference will suffice. However, if a published procedure was modified, the alterations to the original protocol should be clearly outlined. Describe in detail any new techniques developed during the project.

7. **Results:**
Summarize the data obtained from your experiments in figures and/or tables, as appropriate, following the journal format for table headings and figure legends. Figures and tables should be clearly labelled and easy to interpret. Proper statistical analysis is required in most cases or at least some statement about reproducibility. Include both positive and negative results, making brief mention of failed experiments.

8. **Discussion:**
This section is where you interpret the results of your experiment. Be cautious not to simply restate the results, but to analyze the meaning of these results in the context of the problem you posed in your introduction. Explain the significance of your results and what the impact of these is on the field of study. If appropriate, use figures, diagrams and models to illustrate your point. Attempt to explain any possible causes for failures or negative results. Also include suggestions for future work.

9. **References:**
Any standard style of referencing is acceptable. Accuracy in your referencing is important, and be sure to find the most current papers on a subject.

The following are some additional general guidelines for the preparation of the thesis:
- 20-30 pages in length
- double-spaced throughout
- 12 point font
- 2.5 cm side margins
- 3 cm top and bottom margins
- all pages numbered consecutively, including title page, references, tables and figures
- the thesis may be bound in any manner the student desires

Presentation does make a difference.
A clear and organized thesis is much easier and more enjoyable to read.
Though it is not a course requirement, it would be helpful for students to submit interim reports to their supervisor. These reports will not be graded, but will give the students an opportunity to receive feedback from their supervisor on their progress and how to organize and write a formal report.
Initial Meeting Form DUE SEPTEMBER 15th, 2011 T1 OR January 13th, 2012 T2!!!!

Please take the time with your student to summarize the outcome of the following discussion topics. Please hand in this sheet to Elizabeth Theriault (theriae@mcmaster.ca) in HSC 4H45.

Research Project (a quick summary of the main goal(s) of the project):

Course Requirements (clearly write out all the course components that need to be achieved by the student and the supervisor):

Work Schedule (a statement showing that the student understands the main concept of the research project and feels confident that the time allotted is sufficient to achieve the goal):

Expectations of supervisor:

Expectations of student:

Summary of summer work (applicable only if student has previously worked in the same laboratory, please attach an additional 1-page summary of summer research completed):

Student Name ___________________________ Supervisor Name ___________________________

Signature of student ______________________

Signature of supervisor (I hereby take full responsibility for the safety of my thesis student during their time in my Lab) ___________________________

Date Completed: ___________________________
Evaluation of Thesis Report

The report should be evaluated based on the following criteria:

1. Understanding of the problem and relevant background information.
2. Results obtained and their interpretation/analysis.
3. In cases where significant problems were encountered, how they were approached and resolved.
4. Clarity of presentation based on the journal article guidelines provided, literature, citation, etc.

The journal article is worth 25 marks. Based on the above criteria, please assign a mark out of 25 giving appropriate justification.

Student Name: __

Committee Member: ___

Date Completed: __________________________

Final Mark (/25): _______________________

Comments:

Final laboratory work (and overall research ability) evaluation (to be completed by the supervisor)

For Biochemistry 4P03

(PLEASE RETURN TO Elizabeth Theriault IN HSC 4N45 NO LATER THAN the last day of classes)

Student Name (please print): ___

Committee Member: __

Date Completed: __

<table>
<thead>
<tr>
<th></th>
<th>PLEASE COMMENT IN THE SPACES PROVIDED BELOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Understanding the problem.</td>
</tr>
<tr>
<td>2.</td>
<td>Familiarity with relevant literature</td>
</tr>
<tr>
<td>3.</td>
<td>Initiative</td>
</tr>
<tr>
<td>4.</td>
<td>Work habits</td>
</tr>
<tr>
<td>5.</td>
<td>Ability at research</td>
</tr>
<tr>
<td>6.</td>
<td>Work completed and its significance</td>
</tr>
<tr>
<td>7.</td>
<td>Data analysis interpretation</td>
</tr>
<tr>
<td>8.</td>
<td>Industriousness</td>
</tr>
<tr>
<td>9.</td>
<td>Experimental judgment</td>
</tr>
</tbody>
</table>

Overall ability (numerical score out of 100)