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The era of scientific mass production (Efron,
2011)

. flood of data, primarily because of advances
in new technologies (e.g., microarrays)

. a deluge of questions

. thousands of estimates or hypothesis tests
that the statistician is asked to tackle

. complex relationships between variables
. unknown or poor measurement property
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« A tool for capturing genetic information
(genotype, gene expression etc.) at a
large scale
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« What are the frequencies and effect sizes
of these changes?

« How important are these changes relative
to the environmental variation in explaining
individual differences in disease
susceptibility?

« And how do the genetic changes interact
with each other and with environmental
factors?
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Using high-throughput genotype data to answer questions on
complex diseases (Sham & Cherney, 2011)
« Genetic variants involved in individual

differences in the propensity to develop
disease

« Where are these sequence changes located
on the 23 chromosomes that constitute the
human genome?

« What is the nature of the sequence
changes in these variants (e.g., single base
pair changes, copy number changes, etc.)?
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Applications of Microarray Technology

o Gene expression profiling
. In different cells/tissues
« During the course of development
« Under different environmental or chemical stimuli
. In disease state versus healthy
o Molecular diagnosis:
« Molecular classification of diseases
o Drug development
. Identification of new targets
« Pharmacogenomics
. Individualized medicine

Joseph Beyene | McMaster University



The “Omics” era

« Genome — genomics
. Epigenomics
« Phrmacogenomics
« Nutrigenomics

« Transcriptome - transcriptomics
Protein — proteomics
Metabolome — metabolomics

« Interactomics

e etc
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Statistical Issues

Experimental design |\
Image analy.

Preprocessing
(Normalization, filtering,
MYV imputation)

Gene enrichment
analysis

expressed genes

| Clustering | | Classification |

Integrative analysis &
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Data visualization | | Regulatory network
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Manhattan plot displaying GWA findings with respect to their genomic positions, highlighting signals
of particular interest (McCarthy et al, Nature Rev Genet 2008). Type 2 diabetes component of the
Welcome Trust Case Control Consortium study. The strongest associations are seen on
chromosomes 10 (transcription factor 7-like 2; TCF7L2), 16 (fat mass and obesity associated; FTO)
and GN(C1?I§£ 4regulatory subunit associatederotein 1-like 1; CDKALT).
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Golub et al.

1E% nden
Molecular classification of W‘H_‘, uds
cancer: class discovery and i SR
class prediction by gene i
expression monitoring. ?:, i
Science 1999. ==
ALL - acute lymphoblastic
leukemia

AML - acute myeloid
leukemia
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“Biostatomics”

« The art and science of extracting, organizing,
analyzing and interpreting “omics”, clinical,
lifestyle and other environmental data

. systemizing diverse data in order to produce useful
information

« A crucial tool for an interdisciplinary research
on the determinants and impact of complex
diseases:

« molecular-genetic factors, risk modifiers and
population health

Joseph Beyene | McMaster University
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Why integrate data?

« Class comparison/univariate association
. Improve power to measure small effects
. Improve precision of estimated effects
. Assess heterogeneity

« Association/correlation between different sets
of variables
« derive structure in each set and maximize their correlation
« Class prediction

« Improve prediction accuracy

« Understand (quantify) relative contribution of different
sources of data

Joseph Beyene | McMaster University




Data integration

« Conceptual framework
« Integrating similar data types
« Integrating heterogeneous data types

« Integrating statistical information with
biological domain data

2014-11-27
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Differential
expression

I Similar
/ data
types
Copy number E.g., data from
variation different technologies,
platforms, labs
dh Pre-processing'

Leads to different (data matching, Intermediate
Feature data quality and/ normalization,
extraction or informativity quality filtering
R etc.)
Heterogeneous
Classification \ data types
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FiGure 1: Conceptual framework for data integration in genetics and genomics.

Hamid JS, Hu P, Roslin NM, Ling V, Greenwood (M, Beyene J. Data integration in genetigg
and genomics. Methods and challenges. Human Genomics and Proteomics, 2009

Part-1:
Class comparison / univariate
association

Nov 14, 2014 McMaster University

Integrating “Similar” Data

« Meta-analysis approaches and methods
» Fixed versus random effect models
« Weights based on quality scores

. Different parameterization of association
parameter (i.e., different effect size)

« Modified meta-analytic methods for heterogeneous
cohorts

Joseph Beyene | McMaster University




Integrating “similar” data types

» Meta-analytic techniques have been used with excellent
success to combine similar types of data across different
studies that address similar hypotheses

« We have demonstrated that our ability to detect associations
can be greatly enhanced when proper meta-analytic techniques
are applied

Hu, P., Greenwood, C.M.T., Beyene, J. (2005). Integrative analysis of multiple
gene expression profiles with quality-adjusted effect size models. BMC Bioinformatics,
vol. 6, 128, pp. 1-11.

Hu P, Greenwood CM, Beyene J. Using the ratio of means as the effect size
measure in combining results of microarray experiments. BMC Syst Biol. 2009, 5;3:106.

Neupane B, Loeb M, Anand SS, Beyene J. Meta-analysis of genetic
association studies under heterogeneity. Eur J Hum Genet. 2012, 11:1174-81.

Friedrich JO, Adhikari NKJ, Beyene J. Ratio of geometric means to analyze
continuous outcomes in meta-analysis: comparison to mean differences and ratio of
arithmetic means using empiric data and simulation. Stat Med. 2012
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Test statistics

% Let B; and s; be the estimate of B, and it SE in the ith cohort

¢ Fixed effect model

% FE: T= (S,w,Bi)?/Z,w, ~ x,2: where w, = 1/s2
< New FE: T= Z,(Bi/s)* ~ 12

* Random effect model:

Obtain T2, i= 3 wiﬁi/ Tow;; var(fl) = 1/Z,w;; where w, = 1/(s2+ t2)

% RE: Wald test, T = i*/var(fi) ~ 3,2

2014-11-27

Hypotheses

++ Suppose there are k cohorts (studies/populations)

% let the effect in i cohort = B,

¢ Fixed effect model
% (Traditional) FE: H: B=..=B=B=0 vs. H;:B,=..=B=p#0
% New FE: Hj: B,=...= =0 vs. H: B,# 0 for at least one cohort

* Random effect model.

Let B, B,,-...B, ~ iid N(p, 1); p = overall mean, = between-cohort variance
% (Traditional) RE: H: p=0 vs. H;:p#0.
% New RE:H:p=0and>=0 vs. H:pu#0or*>0

Nov 14, 2014 McMaster University 22

% New RE: LR test, T = 2(I(fi, t2) - 1(0, 0)) ~ (3,2 +1.2)/2

Simulation Study

% Genotypes, x=0, 1,2

< Total sample sizes, N: 2000, 4000, 6000, 8000, 10000

« Number of studies, k: 2,3, 5,7, 10 studies

% B.B,....., were simulated from N(p, )

«+ 10,000 simulations for each combination of (u, t), where

» Average effect, p=0, .05, .10, .15, .20, .25, .30

» Corresponding ORs: 1.00, 1.05, 1.11, 1.16, 1.22, 1.28, 1.35.
» Heterogeneity, =0, 0.1, 0.2, 0.3

« SNPs minor allele frequency (MAF): MAF = 0.05; MAF = 0.20
< Genetic risk models: Multiplicative, Dominant, Recessive

+ Data were simulated/analyzed using logistic regression

Neupane B, Loeb M, Anand SS, Beyene J. Meta-analysis of genetic association studies
under’hétérégeneity. Eur J Hum Genet!'2072,"11:1174-81. 2




5 studies, each with 800 subjects with 400 cases and 400 controls; MAF = 0.20 (equal)

No heterogeneity (t=0) Low heterogeneity (t=0.1)
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5 studies, each with 800 subjects with 400 cases and 400 controls

Moderate Heterogeneity, MAF = 0.05 Substantial Heterogeneity, MAF = 0.05
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Integrating “heterogeneous” data

o Observations for different types of variables are
available on the same subjects in each study
« Example-1:
* Sparse canonical correlation analysis (SCCA)
« Example-2:
» Weighted Kernel Fisher discriminant analysis (WKFDA)
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Part-11

Correlation across data types

Nov 14, 2014 Joseph Beyene McMaster University 29

Classical PCA Review

e Principal components are nothing but linear
combinations of the original variables:

(PC1) Zy=vnX;+vi2Xo+ - +v,X, = 01X

(PC2) Zy=vnX1+v0Xs+ - +v5,X, = X

(PCp) Zp=v,X1+vpXe+ - v, X, = v X

e Loading values: V = (vi,vz....,vp)

Nov 14, 2014 Joseph Beyene | McMaster University 31
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Classical PCA Review

e Transform the original variables into new set of
variables called principal components.
X, [ X2 |... X, Z [ Z | - | Z
_
Nov 14, 2014 Joseph Beyene | McMaster University 30

Classical PCA Review

e Three identifying properties:

1. Maximized Variances:
Var(Zy) > Var(Zp) > ... > Var(Z,) > 0.

2. Orthonormal Loading Vectors, Uncorrelated PCs:
Ivill3 =1, vj’»vm =0 and Cov(Zj,Zn) =0 for j # m.

3. Total Variance preserved:
Zf:1 Var(Zj) = Zj”:l Var(X;).

e Variance-covariance matrix dictates solutions.
e Easily found with SvD: X = UDV’

Nov 14, 2014 Joseph Beyene | McMaster University 32



Issues in High-dimensional data

¢ All non-zero loadings; cannot interpret.

(PC'1) Z, =-0.56X, —0.59X, — 0.57X3 + 0.07X,4 + 0.02X5 — 0.01.X¢ + =)
(PC2) Zy =0.01X; + 0.10X5 — 0.04X3 + 0.77X4 — 0.63X; + 0.01X; + ... =
(PC'3) Zs=0.61X, —0.14X; — 0.51X5 — 0.38X, — 0.44X5 — 0.01X4 +...==
(PC4) Zy=047X, — 0.72X5 + 0.32X5 + 0.31X4 + 0.25X5 — 0.02X + .. =
(PC'5) Zs =0.29X, + 0.32X, — 0.56 X5 + 0.40X4 + 0.58X5 + 0.06 X + .. =
(PC'6) Zs = 0.05X; — 0.05X5 — 0.01X;5 — 0.07X; — 0.07X5 + 0.99Xg + ... =

e Unrealistic and impractical for latent features

of the data to be driven by so many variables.
Nov 14, 2014 Joseph Beyene | McMaster University 33

Extensive Simulation
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Sparse Principal Component Analysis for High-
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Sparse PCA

e Force those small residual loadings to 0

(PC1) 2, =|-0.72X, — 0.60X, — 0.35X,]+ 0X, + 0X; — 0Xq

(PC2) Zy =0X; +0Xs + 0X;3|— 0.67X, + 0.74X5 |+ 0X

(PC3) Z3=-0.27X; —0.22X, + 0.94X3 + 0X, + 0X5 + 0X¢

(PC4) Zy=0.64X, — 0.77X + 0X;3 + 0X; + 0X5 + 0X
(PC'5) Zs5 =0X; +0Xs + 0X;3 — 0.74X, — 0.67X5 + 0X

(PC6) Zg = 0X, +0Xs +0X; +0X, +0X;

¢ Introduce sparseness to the loadings through
adjusting tuning parameters

Nov 14, 2014 Joseph Beyene | McMaster University 34

Canonical Correlation

e Consider two datasets with p and q variables,
obtained on n observations.

d voa D 1... 4a
1 1
n n

Nov 14, 2014 Joseph Beyene | McMaster University 36




Example-1
CCA: Cardiac Surgery Data

X1 X2 ... Xp Yi Y2 ... Vg

X1t X2 ... Xip Yo Y2 oo Yig
X = Y = .

Xt X2 - Xnp Yot Y2 - Yng

* Need to find relationship between risk factors and various
outcomes in cardiac surgery

* n=2605 patients who underwent cardiac surgery

* p =74 potential risk factors
* = 12 different outcome measures

Riddﬁggqp_lg et al. Canonical correlation qqg\lw}js,ishgy{ {i§}§ factors and clinical outcomes in

Ster

1 37
cardiac surgery, Journal of Medical Systems, 2005

o Need samples at least 20 x number of variables to avoid
computational problems and to estimate parameters accurately

e Solutions are linear combinations of entire sets of variables
under consideration

o In high-dimensional data, sample size is very small compared to
number of variables

Barcikowski and Stevens. A Monte Carlo study of stability of canonical correlations, canonical
weights and canonical variate-variable correlations. Multivariate Behavioral Research, 1975

Nov 14, 2014 Joseph Beyene | McMaster University
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Canonical Correlation Analysis

e Canonical correlation analysis (CCA) is a classical
multivariate method used for finding correlations
between two sets of multi-dimensional variables.

« CCA can be used for dimension reduction and data
visualization.

e maximizeap a’X’Yb subject to a’X’Xa=1, b’Y’'Yb=1

e CCA gives a linear combination of X that is highly
associated with a linear combination of Y
measurements

Nov 14, 2014 Joseph Beyene | McMaster University 38

Sparse canonical correlation analysis

. Automated selection of variables based on
mathematical objective function

- Developed fast-converging computer algorithm

Units of red blood cells 086 0.89 Lengthof stay in ICU
Units of platelets 067 0.86 Ventilator support
Arrhythmia in ICU 0.57 Corr=0.76 /,0 61 Renal insufficiency
Duration of surgery 0 53—6}—\@1\/ 0.54  Multiple organ failure
Cardiopulmonary bypass time ~ 0.51 053 Dialysis
Metabolic support in ICU 045, 0.51 30-day mortality
Blood transfusion 045 044 Pneumonia

E Parkhomenko, D. Tritchler, J. Beyene .Sparse Canonical Correlation Analysis with Application
to Genomic Data Integration. Statistical Applications in Genetics and Molecular Biology, 2009

Nov 14, 2014 Joseph Beyene | McMaster University
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SCCA — a comparison of methods

athish Pichika’s MSc proje

o We compared three SCCA methods: Parkhomenko et al. (2009), Witten et al. (2009),
and Lee et al. (2011)

e InSCCA, only a sparse set of variables will be included in the solution from
each set.

maximize., a’X’Yb
subjecttoa’a<1,b’b<1,Pia)<cy, Pib) <

e CCA/SCCA seeks weights a, b such that Cor(Xa, Yb) is large but in SCCA most
of the weights are 0. i.e., as, b/s are 0.

e The penalty functions vary and tuning parameters estimated using cross-
validation

Nov 14, 2014 Joseph Beyene | McMaster University 41

e Let X contain p variables and Y contains q variables
and sample sizes be n.

e Suppose only a subset of variables in X is correlated
with a subset of variables in Y

« first few variables in X is highly correlated with the
first few variables in Y

S T P A1 Yir o Y o Yig
X = Y =
Tp1 0 Ty o 'Tnp Ynt = Ynr ,I/np
Nov 14, 2014 Joseph Beyene | McMaster University 43
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Parameters Varied in Simulation

n Observations 30 and 500
p Number of variables in X 50 and 2000
q Number of variables in X 30 and 1500
r Number of Correlated variables 5and 50
[N Std. Dev. of Latent variable (p) 1.8and 4
o, Std. Dev. of nuisance variable 0.1and 0.5
Nov 14, 2014 Joseph Beyene | McMaster University a4
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e Using the angle between the true canonical variates and
their estimates as the measure of closeness (Johnstone
and Lu (2009)) given by

dist(a1.d1) = sinZ(a1, &) = /1 - (a] &

e Discordance measures

number of false negatives (FNN) and false positives (FPN)

FP = number of nuisance variables with non-zero loadings in the resulting
vector

FN = number of correlated variables with zero loadings in the resulting
vector

e For each scenario, measures are averaged over 1000 simulated
datasets

Nov 14, 2014
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031 0.07 0.04

PT 07519 031 1152 9.16
wT 5 075543 047 049 0.83 0.14 2.72 2.84
iy 07737 016 0.5 17 14 0.07 0.03
PT 07541 024  0.23 1284 997 0.77 0.71
WT 15 07492 053 0.57 0.21 0 9.52 10.39
T 07743 018 0.6 15.9 14 0.76 031
Nov 14, 2014 McMaster University 47
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Table 1: n =100, p =300, q=200,r=15, 0,=2, 0,=0.01

(2009), CCA = Classical Canonical Correlation Analysis.

Test
Corr.

CCA 0.9738 0.17 0.19 285 185
PT E/I 0.9975 0.09 0.09 2.75 2255 0 0
WT ﬁ 0.9935 0.21 0.20 3 0.36 6.91 8.82
LT 0.9975 0.02 0.02 0.63 091 0 0
CCA M 0.9741 0.17 0.17 285 185 0 0
PT ED 0.9975 0.09 0.09 0 0 0 0
WT L 0.9930 0.19 0.18 0 0 9 11
LT N 0.9975 0.02 0.02 0 0 0 0
Nov 14, 2014 McMaster University 46

WT = Witten et al. (2009), LT = Lee et al. (2011), PT = Parkhomenko et al.

0 0

Application

e Gene and protein expression data were obtained from the National
Cancer Institute http://discover.nci.nih.gov/cellminer/

« The data contains 60 humans cancer cell lines that include a variety of
cancer tissues of origins such as leukemias, lymphomas, and
carcinomas of ovarian, renal, breast, prostate, colon, lung, and CNS
origin

e Pre-processing (normalization, filtering) prior to applying SCCA methods

« n=59

« X (gene expression data): p =10,123

« Y (protein data): q = 89

Nov 14, 2014 Joseph Beyene | McMaster University
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Summary of results of three different SCCA methods

Non-Zeros in Non-Zero in Protein Data | Canonical
Gene Expression Data Correlation
Coefficient

SCCA
LT 3232 7 0.8579
WT 3418 24 0.9516
PT 310 34 0.9559
Nov 14, 2014 Joseph Beyene | McMaster University 49

Kernel-based statistical methods

= Reduce data to the same dimension and
common format

- Each data source is represented as a kernel
matrix K;

- Kernels are similarity measures e.g., Gaussian
and polynomial kernels

= Let K ={Kl1, K2,..., Km} we can define a
combined kernel as Y, u;K;,

= We proposed weights based on classification

accuracy
= WKFD analysis is performed on the combined
kernel
Nov 14, 2014 Joseph Beyene | McMaster University 51
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Part-II1
Class prediction

Nov 14, 2014 Joseph Beyene McMaster University

Kernels

e Kernels will be of size n by n

e Any symmetric, positive semi-definite function
is a valid kernel

e Linear, polynomial, Gaussian etc.

Hamid JS, Greenwood CMT, Beyene J. Weighted kernel Fisher discriminant analysis
for integrating heterogeneous data. Comput Stat Data Anal., 2012, 56:2031-40.

Nov 14, 2014 Joseph Beyene | McMaster University 52
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Weighted kernels

m
K = Z w;iK;,

i=1

where w; are given by

1
——2,
wi:{e,-

0, otherwise

ife; = 0.5

Hamid JS, Greenwood CMT, Beyene J. Weighted kernel Fisher discriminant analysis
for integrating heterogeneous data. Comput Stat Data Anal., 2012, 56:2031—40.

Nov 14, 2014 Joseph Beyene | McMaster University 53

Simulation II

One of the data sets is generated
to have more information (black)
than the other (blue)

S
=

Integration (both naive and
weighted) provided improved

Average true positive rate
=)
o

accuracy
04,
Weighted integration (red)
performed better than naive 03
integration (green)
02
We also showed that the kernel
weights can be interpreted as 01
relative importance of the data - ) . . . )
sets %0 02 04 06 08 1

Average false positive rate

Nov 14, 201. McMaster University
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Simulation I

We generated two data sets 08
with”similar information in

Bredlctlng outcome (blue and
lack curves).

I3
»

We performed naive éequal
weight) and weighte
integration using wKFD.

I3
=

Average trus postilve rate
o
o

o
@

Integration provided improved 2

accuracy o
Naive (green) and weighted % w2 u s om
(reqR integration provided Average flse posivere
similar performances (as

expected)

Nov 14, 201. McMaster University 54

Illustrative example — integration of clinical and gene

expression data in cancer prediction

o We used a publicly available breast cancer data
set

e 295 breast cancer patients of whom 180 had
poor prognosis (distant metastases ) and 115 had
good prognosis (free of distant metastases).

o Aim: Predict disease outcome (good or poor
prognosis)

Nov 14, 2014 Joseph Beyene | McMaster University
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Illustrative example ...

2014-11-27

Average standardized weights, classification error, and area under the ROC curve and their corresponding standard errors (se) for the breast cancer data.

Method Weight Error (se) AUC (se)
Clinical Gene expression
« Clinical data consists of 12 variables - age, number of positive KED 1 0 0300(0038) 0613(054
nodes, tumor diameter, histologic grade, mastectomy, wm 0 1 0299(0038) 0593(0.049)
chemotherap\{, hormonal therapy, NIH risk, Estrogen Receptor wKFD (naive) 05 05 0293(0042) 0646(0051)
status, St Gallen recommendation, NIH recommendation, wkFD 04995 (0.015) 05005 (0.015) 0275(0039) 0644(0.053)

Tumor stage
« Gene expression data consists of 24, 479 genes

« We used IQR to filter gene expression data — 214 genes were
included in the analysis

« WKFD analysis was performed to estimate the relative
importance of clinical and gene expression data in predicting

" Standard errors or the weights.
Equal weights are assigned to the clinical and gene expression data.

+ Clinical and gene expression data provided similar
predictive accuracy

« Integration of the two data sets provided little
improvement, this may be due to data redundancy

disease outcome

» Both naive and weighted integration provided similar
performance

Nov 14, 2014 McMaster University 58
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The NEW ENGLAND JOURNAL of MEDICINE

Challenge

« Needle in the haystack problem
« Over fitting is a huge issue
« Biological validation is critical

CORRESPONDENCE

Retraction: A Genomic Strategy to Refine Prognosis in Early-Stage
Non—-Small-Cell Lung Cancer. N Engl ] Med 2006;355:570-80.

TO THE EDITOR: We would like to retract our ar- Jason Koontz, M.D
ticle, “A Genomic Strategy to Refine Prognosis in  Duke University Medical Center
Early-Stage Non—Small-Cell Lung Cancer,” which Purham. N
was published in the Journal on August 10, 2006. Robert Kratzke, M.D
Using a sample set from a study by the American University of Minnesota
College of Surgeons Oncology Group (ACOSOG) Minneapolis, MN
and a collection of samples from a study by the Mark A. Watson, M.D., Ph.D.
Cancer and Leukemia Group B (CALGB), we have Washington University School of Medicine
tried and failed to reproduce results supporting St. Louis, MO
the validation of the lung metagene model de- Michael Kelley, M.D.
scribed in the article. We deeply regret the effect Geoffrey S. Ginsburg, M.D., Ph.D
of WWi¥@8tion on the work of other investigtors/vidike West, Ph.D.

. David H. Harpole, Ir.. M.D.

Nov 14, 2014 Joseph Beyene | McMaster University
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Challenges ...

« The “curse” of technology
« Capacity for collecting data has surpassed the
data analysis techniques, and it is only
getting worse with newer data types (e.g.
whole genome sequence)
« Interdisciplinary collaboration is crucial
for success
« Basic biologists; clinicians; statisticians;
computer scientists ; mathematicians

Nov 14, 2014 Joseph Beyene | McMaster University

Conclusions ...

o New and efficient statistical methodologies
need to be developed and validated

e Appropriate pre-processing of data, quality
assessment and adjustment, biological
validation etc. are crucial.

Joseph Beyene | McMaster University
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Conclusions

e With the availability of many large-scale ‘omics’ data along
with clinical and environmental data, integrative analysis is
becoming crucial

» can help unravel relationships between different biological
functional levels

« May lead to improved accuracy in the context of prediction
« Allows detection of small effects sizes
« Explore heterogeneity
e There are major computational and statistical challenges
due to high-dimensional nature of data (e.g., large number
of variables but small sample size)

Nov 14, 2014 Joseph Beyene | McMaster University
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