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Challenges in reproducibility of genetic association studies:
lessons learned from the obesity field
A Li and D Meyre

A robust replication of initial genetic association findings has proved to be difficult in human complex diseases and more
specifically in the obesity field. An obvious cause of non-replication in genetic association studies is the initial report of a false
positive result, which can be explained by a non-heritable phenotype, insufficient sample size, improper correction for multiple
testing, population stratification, technical biases, insufficient quality control or inappropriate statistical analyses. Replication may,
however, be challenging even when the original study describes a true positive association. The reasons include underpowered
replication samples, gene � gene, gene � environment interactions, genetic and phenotypic heterogeneity and subjective
interpretation of data. In this review, we address classic pitfalls in genetic association studies and provide guidelines for proper
discovery and replication genetic association studies with a specific focus on obesity.
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INTRODUCTION
The prevalence of obesity has reached epidemic proportion across
the world.1 Genetic influence has a substantial role in this disease,2

and has led scientists to search for the specific genetic determi-
nants of human obesity. Candidate gene and linkage approaches
have given rise to the discovery of several genes associated with
monogenic or syndromic obesity, but provided limited success to
identifying genetic variants that are associated with polygenic
obesity.3 This situation was not exclusive to obesity, as most
reported associations were not conclusive in human complex
diseases.4 These observations raised concerns about the reliability
of such genetic association studies, and high-impact publications
such as the Journal of Clinical Investigation even stated in their
editorial policy that genetic linkage and association studies related
to complex disorders were unlikely to be accepted (http://www.
jci.org/kiosk/publish/policies). This situation has changed recently
with new high-throughput single-nucleotide polymorphism (SNP)
genotyping array technologies enabling genome-wide associa-
tion studies (GWAS),5 and with the establishment of international
consortiums providing sample size large enough to identify gene
variants with modest effect size (odds ratio (OR)o 2).6 More than
1000 loci have now been convincingly associated with human
complex traits using GWAS and close to 70 gene variants have
been associated with obesity-related traits at a stringent level of
significance (Po5� 10� 8).7 However, despite the remarkable
progress made during the last decade in the genetic epidemio-
logy field, several questions remain.8 How can we explain that
despite promising original association reports, some genetic
associations are widely replicated whereas others are not? When
can we be confident that a positive finding is truly positive?
How can we differentiate good genetic association studies from
inadequate ones? We searched literature using the keywords
‘genetic AND obesity’ (11 152) or ‘genetic association studies’
(47 368) in the PubMed NCBI database from January 1987 to

February 2012. We selectively cited the more illustrative papers to
address the classic pitfalls in genetic association studies and to
provide guidelines for proper genetic association discovery and
replication studies, specifically focused on obesity.

LACK OF REPLICATION DUE TO FALSE POSITIVE RESULT
REPORTED IN ORIGINAL STUDY
Genetically complex diseases involve a large number of genetic,
environmental factors and their interactions. In general, common
risk alleles are less deterministic and more probabilistic than rare
monogenic mutations, and only slightly increase the chance of
disease. They are found in affected but also in unaffected people
in populations.4 Finding an association between such a variant
and disease is statistic by essence and the risk of reporting an
initial positive association by chance can never be totally excluded.
However, the risk of reporting a false positive association is more
likely to occur in certain circumstances as listed below.

The phenotype is not heritable
Heritability reflects the proportion of total phenotypic variability
caused by genetic variance in a population. When genetic
variation refers to additive genetic effect only, heritability is
named narrow-sense heritability or just heritability (h2); when
genetic variation includes all additive, dominant and epistatic
genetic effects, heritability is defined as broad-sense heritability
(H2).9 Adoption and twin studies are the best study designs for
heritability estimation because of their natural separation of
genetic and environmental components, whereas family parent–
offspring and sibling studies estimate less accurately the
heritability owing to their partial similarity in genes and the same
degree of environmental similarity.9

A phenotype with a substantial heritability is an important
prerequisite to enable the identification of genetic determinants.10
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Heritability studies have shown that obesity, body mass index (BMI)
and BMI change are highly heritable traits (h2 is 50–80%).2,11,12

Intermediary endophenotypes related to obesity, such as percent-
age of body fat,13 eating behavior14 and energy expenditure,15

have also a significant heritable component.

Insufficient sample size
A meta-analysis of 37 linkage studies for BMI did not detect
significant linkage regions (LOD score4 3.6),16 suggesting that
multiple susceptibility variants with small effect sizes may affect
obesity predisposition. Evidence from the variants consistently
associated with obesity to date confirms this view.7 To the rare
exception of the MC4R I251L or GPR120 R270H infrequent coding
variants,17,18 polymorphisms associated with obesity display
modest OR values typically lower than 1.50.7 This implies that
large sample sizes are needed in case–control studies designed for
gene discovery efforts (Table 1). Such large sample sizes have not
been reported in obesity studies until recently,19,20 suggesting
that most of the association studies reported before were
underpowered to identify the effect sizes expected for obesity
predisposing common variants. As small discovery studies tend to
overestimate the true effect of gene variants,21 underpowered
case–control studies are likely to prompt false positive associa-
tions and only few associations first reported from smaller studies
prove to be reliable in larger replication data sets.21 The GAD2
gene story is illustrative of this. In 2003, an initial study reported
an association between the GAD2 -243A4G promoter variant and
obesity in a case–control design of 575 morbidly obese and 646
control French subjects.22 This sample was considered substantial
at that time, but was far less than the sample requirements
predicted by power calculation studies for an OR of 1.3 and a risk
allele frequency of 0.17 in controls (Table 1). Logically, a replication
effort in 680 class III obesity cases and 1186 lean controls of
European ancestry did not replicate the original finding23 and an
adequately powered meta-analysis recapitulating the data of the
two studies (n¼ 3052) did not find any association (P¼ 0.28).23

Lack of proper correction for multiple testing
To account for multiple testing, researchers typically apply
Bonferroni correction in which a threshold P of 0.05/n (n¼
number of statistical tests performed in the study) is set. For
instance, in a GWAS using 1� 106 genetic markers, a threshold P
of 5� 10� 8 is needed to declare an association at the corrected
threshold of type I error of 5%. Testing multiple hypotheses in one
study (multiple genetic markers, phenotypes and subgroup
analyses) without proper adjustment for multiple comparisons
increases the risk of a false positive report. In the original

report showing an association between rs7566605 in INSIG2
gene and BMI in 694 participants from the Framingham Heart
Study (P¼ 0.0026), the lack of correction for multiple testing
(a Bonferroni adjusted P-value threshold of 5.7� 10� 7 was
needed after performing 86604 statistical tests)24 in combination
with the insufficient sample size of the discovery cohort may
explain the lack of replication of this association in three
well-powered follow-up studies,25–27 in a meta-analysis of 74 345
subjects28 and more recently in the large-scale GIANT GWAS
initiative,29 even if others have pointed out a context dependent
association of the rs7566605 with obesity as an alternative
explanation.28,30

Population stratification and confounding
In a case–control study, controls should ideally be selected from
the same population as cases. Allele frequency of genetic variants
can vary depending on the ethnic background or even the
geographical location. When cases and controls are drawn from
multiple ethnic or geographic groups whose phenotype pre-
valence and allele frequencies differ for the gene variants tested,
confounding unintentionally occurs, leading to false positive
associations.4,8,31 This is likely the case for obesity predisposing
variants, as several of them show highly varying levels of inter-
ethnic or inter-geographic allele frequency variation, possibly due
to positive diversifying selection (for example, ENPP1 rs1044498,
FTO rs9939609 or LCT rs4988235).32–34 In addition, prevalence of
obesity strongly varies according to the ethnic background in a
specific country.35 Even if such confounding seems to have
modest consequences in case–control studies, it may generate
spurious association signal if not properly taken into account,
especially in large-scale association studies.36 GWAS for obesity-
related traits have reported modest but real evidence of
population stratification.6,19

Genotype misclassification and reliability in quality control
Genotyping errors are frequent in genetic association studies,37

leading to non-differential genotype misclassifications (same
probability of being misclassified for all study subjects) or
differential genotype misclassifications (varying probability of
being misclassified according to the study groups). A 1% increase
in genotyping errors will add up sample size by 2–8% to keep the
same type I and II errors.38 Genotyping errors from batch to batch,
laboratory to laboratory or preferential rejection of particular
genotypes (usually heterozygotes) can result in differential
genotype misclassifications and significant differences between
case and control groups, leading to false positive association.
A recent large-scale family-based study using TaqMan technology
excluded a role of VNTR INS polymorphism in childhood obesity39

despite previous positive association using PCR-based restriction
fragment length polymorphism (RFLP).40 As the reproducibility
of RFLP genotyping data has been questioned, this method
being highly subjective,41 the authors suggested that the lack of
replication may be a result of previous genotype misclassification
from the RFLP method.39

Inappropriate statistical analyses
Numerous studies use the w2 or Fisher exact test to estimate
the difference of genotype distribution in cases and controls.
Linear/logistic regression is therefore a more relevant approach to
make comparisons between groups as it allows adjustment for
confounding or mediating factors, and introduction of gene �
gene or gene � environment interaction terms.42 The FTO
identification study by Frayling et al.43 is illustrative of the
importance of properly adjusted association studies for
confounding or mediating factors. The rs9939609 in FTO gene
was found initially by GWAS for type 2 diabetes. This strong

Table 1. Sample sizes needed in a case–control design to detect
significant association with a power of 90% and a two-sided P of 0.001
by odds ratio and allele frequency for risk allele

MAF in control 0.01 0.05 0.1 0.2 0.3 0.4

Allelic OR

1.1 443 854 92 868 49 252 27 974 21 518 19 010
1.2 116 354 24 434 13 018 7460 5792 5162
1.3 54 110 11 404 6102 3526 2760 2480
1.5 21 208 4498 2426 1424 1132 1032
2.0 6386 1374 754 458 376 354

Abbreviations: MAF, minor allele frequency: OR, odds ratio. Calculations
assume multiplicative effect on disease risk. Sample sizes presented are
total number of cases and controls needed, assuming an equal number of
cases and controls. The estimated sample sizes are derived assuming
power¼ 90% and two-sided P¼ 0.001.
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association disappeared after further adjustment in the linear
regression model for BMI, suggesting that the FTO intron 1 variant
predisposition for diabetes was mediated through an effect on
BMI.43

In some association studies, when no expected main effect is
observed, researchers tend to perform post-hoc subgroup
analyses to dredge some apparent positive association.31

Positive association drawn from such analyses should be viewed
with caution.

REPLICATION MAY BE CHALLENGING EVEN WHEN THE
ORIGINAL RESULT IS A TRUE POSITIVE ASSOCIATION
There is a consensus that a single study, even when well-designed
and powered, is not sufficient to establish a valid genotype–
phenotype association and further replication is needed. The main
interest of replication is not only to increase the statistical
significance of the result but also to prove that the initial
association is true and not the result of methodological
inadequacies.44 Given that many published associations could
not be replicated, several high-impact journals such as Nature
Genetics stipulate in their publication guidelines that replication of
an original association in a second independent cohort is
requested prior to consideration for publication.45 The FTO gene
identification story is illustrative of the interest of independent
replications to be confident about a genetic discovery. In 2007,
four different teams independently discovered that variation in
the intron 1 of fat mass- and obesity-associated (FTO) gene is the
major contributor to polygenic obesity in populations of European
ancestry.43,46–48 However, replication does not always follow this
ideal route, and the lack of association in follow-up studies does
not automatically imply that the initial study did not pick-up a true
association signal. Below we describe the main reasons why
replication of a true association may be challenging.

Sample size
A well-powered replication design is crucial to avoid the risk of
both false negative and false positive association reports.49 Power
estimation of the replication samples has become an issue with
the emergence of large-scale discovery studies through
international consortiums. The current largest GIANT meta-
analysis of 249 796 individuals in obesity association study has
confirmed 10 previously identified loci associated with BMI and 4
loci associated with waist circumference, and revealed 18 new loci
associated with BMI.50 Among these 32 loci, rs1558902 (FTO)
explains 0.34% of variance in BMI, and the remaining loci harbor
smaller effect size. A recent study by Zhao et al.51 examined all 32
loci identified from GIANT study in 1097 childhood obesity cases
and 2760 controls, but the associations of only 9 SNPs out of 32
were confirmed. Phenotypic heterogeneity (adult BMI versus
childhood obesity) may explain why some genetic variants are not
replicated, but beyond this limitation the Zhao et al.51 study
illustrates the difficulty to replicate association signals with small
effect size issued from large GWAS meta-analyses. With the
sample size used in this study, the statistical power was 99% to
detect an OR of 1.5, 73% to detect an OR of 1.15, but only 19% to
detect an OR of 1.05 (minor allele frequency¼ 0.2, one-sided
a¼ 0.05), whereas the range of the effect size of obesity
predisposing variants is typically between 1.05 and 1.5.

Gene � gene, gene � environment interaction
Gene � gene or gene � environment interactions specific to the
discovery sample may challenge the ability to replicate the initial
discovery in independent study designs.52 If the other genetic and
relevant environmental factors are not balanced in populations
between initial and subsequent studies, the variance in effect size
from gene � gene and gene � environment interactions may in

part explain the inability in replicating the association. Statistical
power issues are critical in gene � gene or gene � environment
interaction studies and meta-analytic approaches are
recommended to reach sufficient power.53,54 Different study
designs enable the study of gene � gene or gene �
environment interactions, but power calculations have shown
that population-based or nested case–control studies have a
higher capacity in detecting interactions than retrospective case–
control studies.55–57 Case–control studies may be relevant in
detecting gene � gene, gene � environment interactions in
specific situations, as several parameters (for example, allele
frequency, magnitude of interactions, genetic model and linkage
disequilibrium with the causal variant) impact the statistical
power.55,58 Convincing evidence of gene � gene or gene �
environment starts to emerge in the field of obesity. Interaction
between the FTO intron 1 variant, the level of physical activity and
BMI or obesity has been described in 14 independent studies and
confirmed in a meta-analysis of 218 166 adults where physical
activity attenuated the odds of obesity conferred by the variant by
27%.59 A recent study conducted in 62 245 east Asian subjects
identified a significant gene-gene interaction (P¼ 2.0� 10� 8)
between two SNPs in the KLF9 and MSTN loci.60 These data
support the existence of gene � gene and gene � environment
interactions that may interfere with the replication of an initial
association.

Heterogeneity
Genetic/ allelic heterogeneity exists where multiple alleles at the
same locus are associated with the same disease, so that different
studies may find different alleles associated with the same disease.
Linkage disequilibrium varies with the ethnic background and
most of the disease-associated SNPs issued from GWAS are proxy
(a genetic marker of the disease in a specific population) but not
causal, which results in misclassification of the functional risk
alleles. Some SNPs are causal but may be associated in an ethnic-
specific manner.61 If a negative replication is obtained in a
different population, this might lead to reject a true association in
that specific population as a consequence of ignoring allelic
heterogeneity. Another consequence of genetic heterogeneity is
that different polymorphisms can be associated with obesity-
related traits by independent teams, and it can puzzle researchers
when they select genetic markers for replication studies. In 2007,
four SNPs in high linkage disequilibrium (rs9939609, rs1421085,
rs9930506, rs1121980) were described as lead signals for the
association between FTO and obesity by different teams.43,46–48 As
no consensus has been made to select a unique lead SNP for
replication, follow-up studies using any of the four SNPs have
been published, puzzling subsequent meta-analysis initiatives.62

The lack of replication in follow-up studies may sometimes be
explained by phenotypic heterogeneity (different phenotypes
used in the discovery and the follow-up studies). For instance, BMI
can be studied as a quantitative or a categorical trait. Several
thresholds can be used to define the status (overweight, class I,
II or III obesity). Although highly correlated, these different
phenotypes cannot be considered as identical. Following the
initial report of association between the GAD2 -243 A4G variant
and morbid adult obesity among the French,22 Groves et al.63

assessed its role in 573 UK pedigrees ascertained for type 2
diabetes, and found a nominal but directionally inconsistent
association between GAD2 -243A4G and BMI. The authors
concluded that their data ‘did not replicate the previous
associations’ while acknowledging the phenotypic heterogeneity
in the two studies.63

Depending on the study design and recruitment strategy,
ascertainment heterogeneity can partly explain the lack of
consistency between initial and replication association studies.
Even if the same phenotype is used to classify subjects as cases
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(for example, BMIX30 kg m� 2), different subpopulations of
patients may be collected according to the recruitment procedure
(population-based, pedigrees selected for a family history of
obesity, hospital, type 2 diabetes cases, incident cases). The age
window of the collected sample is also crucial. Obesity in
childhood, adolescence, adulthood and agedness are likely to
harbor a complex pattern of inheritance, as recently shown for
FTO intron 1 gene variant and BMI variation.64

Inheritance model
Information on the inheritance model is useful in replication
studies or biological experiments.65 When a formal procedure to
attribute the best-fitting inheritance model for obesity was
applied to the ENPP1 K121Q gene variant, a significant
departure from the additive to the recessive model was
observed,66 and later confirmed for the association between
K121Q SNP and type 2 diabetes.67 Association under a different
genetic model from that reported in the original study cannot be
considered as a formal replication.

Subjective interpretation of data
Subjective overstatement or understatement in the interpretation
of replication data can be observed.68 Researchers may over-
interpret positive findings in the follow-up studies when
attempting to replicate their own original findings, or negatively
interpret follow-up studies when attempting to refute their
competitors’ original claim of association, especially if the
original claim was published in a prestigious journal (the Proteus
phenomenon).69

GUIDELINES FOR PROPER DISCOVERY AND REPLICATION
ASSOCIATION STUDY DESIGNS
Discovery association study designs
Study designs. Four designs are classically used in genetic
association studies: prospective cohort, case–control, family-based
and quantitative trait association study. The prospective cohort
study is often considered as the gold standard in epidemiology,
but the rates of collecting disease cases (other than common
ones) and their follow-up are slow. Consequently, the statistical
power is usually weak.49

A nested case–control can be designed for a prospective study.
Disease cases collected during the follow-up are matched to non-
disease controls selected from a portion of the entire cohort
subjects. This design minimizes the recall bias, selection bias and
inadequate/unreliable records of the environmental exposure
from a retrospective case–control study, particularly when gene
� environment hypotheses are being tested.

Family-based design is optimal in specific situations, such as the
identification of disease-associated variants subjected to parental
imprinting, or in haplotype studies (the reconstruction of the
haplotype phase is improved by availability of parental
genotypes). It is robust to population stratification bias,70 but its
main limitation is the lack of power, especially if the effect sizes
are small.71 If the power is 90%, two-sided P¼ 0.001 and control
allele frequency is 20%, 1765 trios will detect an OR of 1.30, and
for an OR of 1.20, 3731 trios will be necessary, representing 50%
more participants than for a case–control study.

Quantitative trait study (for example, BMI) in large-scale
population-based samples has proved to be an efficient method
to identify novel susceptibility loci.29 However, it requires larger
sample size than case–control studies to reach the same statistical
power,72 and this limitation can become critical if expensive
technologies are used (for example, genome-wide DNA arrays).

Thus, a case–control study represents the most powerful and
cost-efficient method to perform genetic association studies,73 if
the two study groups are selected properly. Population-based

obesity cases can be recruited, but the power of a case–control
study can be increased potentially by applying an enrichment
sampling strategy.74 Obesity cases coming from hospital clinics,
having a strong family background of the disease, an early age of
onset or a more severe phenotype are likely to be enriched for
genetic susceptibility in comparison with obese subjects randomly
selected in the general population. Though enrichment sampling
strategy is useful to improve power in genetic association studies,
it inflates the relative risk and population attributable risk of the
associated gene variants, and population-based follow-up cohort
studies will be needed to obtain a reliable estimation of these
parameters.49

To decrease potential sources of heterogeneity between the
two study groups in case–control studies, controls and cases need
to be selected from the same population. Potential confounders
need to be ascertained in both and adjusted. Ideally, subjects in
two study groups should be matched for ethnic/geographical
origin, age, sex and additional variables for obesity (for example,
level of physical activity) to adjust the regression model for
confounding factors and to reduce residual error. ‘Super control’
subjects can also be selected (normal-weight subjects with no
familial background of obesity75 or extremely lean phenotypes).76

Phenotype. An accurate and specific phenotype of interest is
critical in the design of genetic association studies.8 A phenotype
with a substantial heritability (h2450%) should be favored and
may allow the finding of etiological genetic variants in realistically
achievable sample sizes. The ideal phenotype should be clinically
and biologically relevant, not too rare, inexpensive and easy to
identify in different places, thus allowing large-scale and feasible
discovery and replication studies. It should be well defined so that
measurement error, misclassification and heterogeneity can be
minimized. BMI as a quantitative or qualitative trait is the more
commonly used phenotype in genetic association studies for
obesity. It is a highly heritable trait, easy and inexpensive to
measure. As BMI is available in large data sets, genetic association
meta-analyses have been performed in up to 250 000 subjects.29

However, it also presents several limitations. Subjects in the higher
BMI range tend to under-report their weight, resulting in
inaccurate BMI measurement and misclassification in case–
control studies. Thus, self-reported BMI data by the participants
need to be considered with caution, and BMI data measured by
medical staff is preferred.77 The value of BMI to estimate the
degree of adiposity may be questioned. Although it is strongly
correlated with fat mass in obese subjects, in normal weight and
underweight subjects the correlation is weaker.78,79 At a given
BMI, substantial variation in fat mass was reported.78 Because
phenotypic precision is critical for genetic investigations, the use
of ‘deep phenotyping’ information (for example, body fat content
and percentage of fat mass estimated by dual-emission X-ray
absorptiometry or bioimpedance, behavioral food intake
measured by ad libitum meal test80 and energy expenditure
estimated by room respiration calorimetry80) in large sample sizes
may dissect the genetic influences more accurately on obesity.81

Consistent with this hypothesis, a recent GWAS for body fat
percentage in 32 626 individuals, with a replication of the best
association signals in 39 576 individuals, identified three loci
associated at a genome-wide level of significance: FTO, IRS1 and
SPRY2. Two out of three loci were not identified by previous large-
scale GWAS meta-analysis for BMI.82

Recent GWAS for obesity-related traits have collected pheno-
type information in individuals living in widely heterogeneous
environments. Although successful, this approach may have
missed gene variants associated with BMI in specific environ-
mental exposures. As the genetic basis of body weight regulation
is unlikely to be fully discernible in individuals who are at stable
body weight,83 it may be of particular interest to perform genetic
association studies for adiposity change in response to a major
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environment modification (antipsychotic drug use, smoking
cessation, rapid change in the level of physical activity or diet
habits, caloric restriction, obesity surgery). Such phenotypes may
provide a more comprehensive molecular basis for genetic
predisposition to obesity.

Gene identification strategies. In the field of genetic epidemiology,
we usually distinguish hypothesis-driven candidate gene and
hypothesis-free genome-wide studies.84 Candidate genes are
selected based on the prior evidence of its role in the disease or
phenotype of interest. Arguments to select a specific candidate
gene may come from biology, functional genomics, pharmaco-
logy, animal models or genetics. The success rate of candidate
gene approaches has been poor in the obesity field.3 We consider
the candidate gene approach as a relevant strategy as far as a
careful gene selection process is applied. For instance, candidate
gene studies focusing on MC4R and PCSK1 genes led to the
identification of common variants reproducibly associated with
obesity risk/protection.17,85,86 However, the candidate gene selec-
tion was based on three strong prior arguments: (1) an obesity
phenotype in genetic mouse models; (2) the involvement in
monogenic human obesity; (3) a likely functional role of the
selected polymorphisms.

Hypothesis-free GWAS have been exceptionally successful and
are to date the most efficient way to identify common variants
(minor allele frequency41%) associated with obesity-related
traits. The main limitation of genome-wide approaches in
comparison with the candidate gene strategy is the high level
of significance needed to adjust for the multiple tests performed
and the situation may be even worth in the context of whole-
exome or whole-genome studies. Testing the association of 30 000
genes with obesity rather than only one is certainly more
exhaustive, but as a result a higher level of statistical evidence
for genes with little supporting biological information is needed
before significance is attributed. As pinpointed by John Ioannidis,
‘the greater the number and the lesser the selection of tested
relationships in a scientific field, the less likely the research
findings are to be true’.68

A hybrid approach, the hypothesis-driven genome-wide
association analysis, may lead to an overall decreased number
of statistical tests and to more relaxed significance thresholds by
the prior statement of specific hypotheses to be tested. Genome-
wide analyses restricted to a specific biological pathway,87 to a
linkage region,88 to genes specifically expressed in one important
tissue,89 to genes showing different expression patterns related to
the disease,90 to prioritized candidate genes,19 to potentially
damaging SNPs, or to SNPs harboring an evolutional signature,
may increase success of picking up association signals that have
been missed by conventional GWAS analyses.

Genotyping methodology and quality control procedures. Quality control
to prevent, detect and minimize biases and errors during
genotyping should be one of the top priorities in genetic
association studies.91 From earlier genotyping method of RFLP
to PCR-based high-throughput genotyping, the genotyping error
rate has significantly decreased, but errors and biases still exist.
Sample tracking methods are encouraged to ensure a perfect
correspondence in DNAs, genotypes and phenotypes, and an
accurate analysis. Differences in extraction methods and storage
of DNA samples collected from cases and controls or in different
study centers should be mentioned. DNA quality and concen-
tration need to be first documented to exclude low-quality DNA
samples from further genotyping. Highly reliable and objec-
tive genotyping methods are recommended and genotyping
protocols need to be described. Internal controls, duplicated
samples and blank controls should be distributed in plates to
ensure correct orientation and absence of DNA contamination.
Genotyping quality control procedures include call rate calculation

and deviations from Hardy–Weinberg equilibrium (HWE) sepa-
rately in cases and controls. Call rate higher than 95% and HWE
with P higher than 0.005 in the controls must be targeted, as an
association may induce a modest deviation from HWE in affected
subjects.92 The assay reproducibility should be estimated by the
calculation of a concordance rate in a sufficiently representative
sample size (usually410% of the whole genotyped sample).
A concordance rate higher than 99% is needed to allow further
analyses of the genetic markers. If a family-based design is used,
the consistency of genotypes with mendelian expectations should
be checked. Additional quality control procedures for the most
critical results include the comparison of marker allele frequency
in the experiment to public human genome databases and to
individuals of comparable ethnicity, careful examination of the
genotyping cluster plots to avoid a technical artifact, validation by
an independent genotyping method or genotyping of additional
genetic markers in strong linkage disequilibrium to confirm the
association with the phenotype of interest.46 A flow chart scheme
summarizing the quality control procedures should be provided at
least as supplementary material.

Statistical analyses. Prior statistical analyses should be stated and a
table with the estimated power of the study design to detect a
wide range of effect and minor allele frequency should be
provided. As only few associations first reported from small
studies are confirmed in larger replication data sets,21 the
scientific community must be warned against underpowered
discovery studies and promote the generalization of large-sized
and well-powered discovery study. A limited number of additional
analyses of subgroups such as age, sex, or categories of obesity
should be specified in a prior hypothesis in addition to tests in the
whole sample, and interpretation of results from subgroup
analyses should be done cautiously and accompanied by inter-
action tests to prove significant between-group heterogeneity.
We recommend using statistical tests that enable the adjustment
for confounding variables. In multiple SNP haplotype analyses, the
investigators should detail the methodology used. Although the
importance of adjusting for multiple comparisons in genetic
association studies is generally accepted, there is no universal
criterion on how it can be achieved. False discovery rate,
Bayesian procedures and adjusted Bonferroni correction are
acceptable.31,93,94 Application of the Bonferroni correction tends
to be over-conservative because the tests performed in a genetic
association study are unlikely to be fully independent (lack of
independence of the three inheritance models, correlation between
different phenotypes and linkage disequilibrium between SNPs).
In GWAS, we recommend a more relaxed P threshold of 5� 10� 6

to select a limited number of promising genetic markers for further
large-scale replication.29 In that situation, a Bonferroni corrected
P of 5� 10� 8 should be applied to the discovery plus replication
(stage 1þ stage 2) joint analysis to confer significance at the
genome-wide level.95 In the recent GIANT GWAS meta-analysis for
BMI in 123 865 individuals, the application of a more relaxed
threshold of Po5� 10� 6 for SNP follow-up rather than a threshold
of P of 5� 10� 8 induced a modest burden of false positive
association signals (24%) but substantially increased the harvest of
disease-associated validated loci (from 68%).29 For most original
associations of common gene variants with common diseases, the
genetic model of inheritance is not properly addressed.65 A formal
procedure to attribute the best-fitting inheritance model for the
phenotype studied is recommended from the discovery study and
should be used for replication efforts. If several SNPs are associated
at the same locus, conditional regression analyses should be applied
to determine if these SNPs are independent and to select the lead
SNP signal(s) to follow up in replication efforts.

Population stratification. The first step to lower population stratifi-
cation is to collect cases and controls in the same geographic area,
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Table 2. Guidelines in designing and implementing discovery and replication studies

Discovery association study

Study designs
Prospective cohort study Gold standard

Slow process
Low statistical power
Expensive to follow-up
Possible high withdrawal rate

Family-based design Useful in the context of parental imprinting
Useful in the context of haplotype studies
Robust to population stratification bias
Low power when effect size is small
Expensive design

Quantitative trait study Large sample size needed
Unable to detect genetic effects at the extremes of the trait distribution

Case–control study Most powerful and cost-efficient
Cautions needed in selecting cases and controls to lower heterogeneity

Phenotype selection
BMI High heritability

Clinically and biologically relevant
Common
Non-negligible measurement error/ risk of misclassification if self-reported
Not accurate to measure adiposity body fat content and percentage of fat mass

‘deep phenotyping’ Food intake/ behavior
Energy expenditure
Adiposity response to environmental changes

Gene identification strategies
Candidate genes Hypothesis-driven

Prior evidence from other disciplines such as biology, functional genomics, pharmacology, animal models or genetics
Genome-wide studies Hypothesis-free

Efficient in identifying novel common variants without previous candidacy
High level of significance needed

Hypothesis-driven
genome-wide association

Lower number of statistical tests

Useful to pick up the association signals missed by conventional GWAS
Focus on biological pathways, linkage regions, transcriptomics data

Genotyping methodology and quality control procedures
DNA sample handling
DNA quality
Description of genotyping protocol
Genotyping quality control: DNA contamination, call rate, Hardy–Weinberg equilibrium, concordance rate, external control from public human
genome databases, genotyping cluster plots, mendelian inconsistencies, validation by another technology and analysis of neighboring SNPs in
strong linkage disequilibrium

Statistical analyses
Analytic methodology selected according to the study design
Prior statement of hypotheses to be tested
Multiple testing correction
Best-fitting inheritance model
Selection of lead SNP for replication efforts

Population stratification
Cases and controls selected from the same population and geographic area
Adjustment for population stratification

Replication studies

Systematic replication of promising original reports
Systematic follow-up of promising associations
Objective interpretation of data

Statistical power
Sample size calculation corrected by the ‘Winner’s curse effect’

Homogeneity
Same ethnicity and similar age, sex, geographic origin
Same phenotype, measurement method
Same inheritance model
Same study design, ascertainment strategy
Same genetic marker, statistical analysis, adjustment for confounding variables

Meta-analysis
Powerful to confirm genetic associations at a stringent level of significance
Estimation of publication bias and between-study heterogeneity

Additional studies
Extension of confirmed variants to other populations (different ethnic backgrounds, age, environmental risks)
Fine-mapping
Gene � environment, gene � gene interaction studies
Functional assay to confirm the biological role of gene variants
Additional biological evidence

Abbreviations: BMI, body mass index; GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.
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first using self-reported ethnicity to equilibrate cases and controls
in multi-ethnic studies, or restricting the analysis to one ethnic
background if a particular ethnic group predominates. As relying
solely on self-reported ethnicity is not sufficient to exclude
population stratification96 and subtle population stratification is
observed within ethnically homogeneous populations,97 several
methods (genomic control, EIGENSTRAT, PCA-L and LAPSTRUCT)
have been developed to correct for population stratification98 and
are now routinely used.6,19 These methods are based on using a
set of ancestry informative markers,99 which are easy to derive
from GWAS data sets,100 but require further genotyping in
candidate gene studies. These markers may also be useful to
account for cryptic relatedness, another potential source of
spurious association in case–control designs.101 Alternatively,
family-based association tests can be used to confirm an
association derived from a case–control study, as they are
insensitive to population stratification biases.102

Replication study designs
Systematic replication of promising original reports. Several teams
working in the field of obesity should be commended for
systematically replicating promising association reports in their
own cohorts. However, other replication efforts may not have
been as systematically conducted even if the original report is well
designed and statistically sound. To move on the right direction,
researchers, but also editors of influential journals, need to
consider well-designed initial and follow-up (negative or positive)
reports of association as equally important. Replication studies
need to be conducted more systematically and less selectively,
and an objective interpretation of data is crucial.

Statistical power. When the original association report describes a
true association signal, the effect size is often overestimated due
to the Winner’s curse effect.103 Subsequent follow-up studies
often fail to replicate the association owing to underestimation of
the required sample size. Hence, when calculating the statistical
power of the replication design, the investigators may correct the
OR from initial study by taking into account the Winner’s curse
effect.103

Heterogeneity. If both original and replication studies are well
designed and well executed, the inability to replicate an original
finding indicates a genuine difference that may be due to
heterogeneity from many sources.104 Heterogeneity among
studies represents a major problem in replicating a true original
signal. Moonesinghe et al.52 have shown that in the presence of
large between-study heterogeneity, true associations may not
be possible to replicate with consistency, no matter how large
the study is. When designing a study in the initial rounds of
replication, investigators need to avoid all the potential sources
of heterogeneity and focus on one main question to increase the
chance to reproduce the original association finding. To reduce
the genetic and environmental heterogeneity, populations in the
initial and in the follow-up studies should share the same ethnicity
and ideally come from the same country. Correction for popula-
tion stratification should be applied as well. Same age window
and sex ratios should be targeted. The study design, genetic
marker, statistical analysis and genetic model should be the same
as those in the initial study. To lower phenotypic heterogeneity,
the same phenotype, measurement method, recruitment strategy
and adjustment for confounding variables should be applied.

Meta-analysis. There are always limitations in individual associa-
tion study. Common genetic variants harboring modest OR or rare
variants with higher OR rarely reach a conclusive threshold of
association in a single study. Meta-analysis of data sets from
comparable studies improves the power to confirm genetic

associations at a stringent level of significance. Unfortunately,
the heterogeneity in the design of follow-up studies (genetic
marker, phenotype and genetic model) and insufficient data
description may reduce the number of eligible studies and the
statistical power in subsequent meta-analyses. Hence, Gallo
et al.105 recently provided detailed guidelines to accurately
report the findings of epidemiological studies involving
biomarkers through the STrengthening the Reporting of
OBservational studies in Epidemiology - Molecular Epidemiology
(STROBE-ME) statement. Estimation of the degree of between-
study heterogeneity and of potential publication bias are
important for the interpretation of meta-analyses.106

Additional studies. Once the risk of false positive association has
been ruled out by initial replication studies, the focus of the
association can be extended to different age windows, different
study designs and ascertainment criteria for cases and controls,
additional phenotypes related to obesity, or to the study of gene
� gene/ gene � environment interactions. The association can
be studied in different ethnic backgrounds to estimate the
worldwide contribution of a given locus, and to fine-map the
association signal. Using a dense SNP map in the associated
interval is strongly recommended, as the initial SNP associated
with obesity is probably in linkage disequilibrium with the causal
locus, while linkage disequilibrium patterns vary according to
ethnicity. Once the putative causal susceptibility variant(s) has
been identified, functional assays should be used to examine
whether a SNP variant alters protein expression or function. As an
association does not always imply causality, biological insights are
essential in increasing the credibility of the observed genetic
association,107 as recently illustrated by the FTO gene. In 2007, a
link between FTO and obesity was established in Europeans
through association studies when FTO was ‘a gene of unknown
function in an unknown pathway’.43,46 Subsequently, more than
400 articles have been published on FTO, providing strong bio-
logical evidence that FTO is a causal gene underlying obesity.108

CONCLUSION
We have reviewed the reasons for the lack of reproducibility in
obesity genetic association studies and offered guidelines for
proper discovery and replication association designs (see Table 2).
‘Learn from yesterday, live for today, hope for tomorrow’: a quote
attributed to the physicist Albert Einstein perfectly depicts our
position in the young field of genetic epidemiology of obesity.
Genetic association studies may first appear simple but actually
face numerous challenges. After some initial disappointments,
methodological, technological and scientific developments have
recently led to more robust associations and renewed attention to
genetic epidemiology. We expect a prolific period of discovery in
human obesity genetics ahead and hope that this review will
contribute to the advancement of these noble goals.
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